DCI Arrangements of the Next Generation Science Standards

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Kindergarten Storyline</td>
<td>4</td>
</tr>
<tr>
<td>K-PS2 Motion and Stability: Forces and Interactions</td>
<td>5</td>
</tr>
<tr>
<td>K-PS3 Energy</td>
<td>6</td>
</tr>
<tr>
<td>K-LS1 From Molecules to Organisms: Structures and Processes</td>
<td>7</td>
</tr>
<tr>
<td>K-ESS2 Earth’s Systems</td>
<td>8</td>
</tr>
<tr>
<td>K-ESS3 Earth and Human Activity</td>
<td>9</td>
</tr>
<tr>
<td>First Grade Storyline</td>
<td>10</td>
</tr>
<tr>
<td>1-PS4 Waves and their Applications in Technologies for Information Transfer</td>
<td>11</td>
</tr>
<tr>
<td>1-LS1 From Molecules to Organisms: Structures and Processes</td>
<td>12</td>
</tr>
<tr>
<td>1-LS3 Heredity: Inheritance and Variation of Traits</td>
<td>13</td>
</tr>
<tr>
<td>1-ESS1 Earth’s Place in the Universe</td>
<td>14</td>
</tr>
<tr>
<td>Second Grade Storyline</td>
<td>15</td>
</tr>
<tr>
<td>2-PS1 Matter and its Interactions</td>
<td>16</td>
</tr>
<tr>
<td>2-LS2 Ecosystems: Interactions, Energy, and Dynamics</td>
<td>17</td>
</tr>
<tr>
<td>2-LS4 Biological Evolution: Unity and Diversity</td>
<td>18</td>
</tr>
<tr>
<td>2-ESS1 Earth’s Place in the Universe</td>
<td>19</td>
</tr>
<tr>
<td>2-ESS2 Earth’s Systems</td>
<td>20</td>
</tr>
<tr>
<td>K-2-ETS1 Engineering Design</td>
<td>21</td>
</tr>
<tr>
<td>Third Grade Storyline</td>
<td>22</td>
</tr>
<tr>
<td>3-PS2 Motion and Stability: Forces and Interactions</td>
<td>23</td>
</tr>
<tr>
<td>3-LS1 From Molecules to Organisms: Structures and Processes</td>
<td>24</td>
</tr>
<tr>
<td>3-LS2 Ecosystems: Interactions, Energy, and Dynamics</td>
<td>25</td>
</tr>
<tr>
<td>3-LS3 Heredity: Inheritance and Variation of Traits</td>
<td>26</td>
</tr>
<tr>
<td>3-LS4 Biological Evolution: Unity and Diversity</td>
<td>27</td>
</tr>
<tr>
<td>3-ESS2 Earth’s Systems</td>
<td>28</td>
</tr>
<tr>
<td>3-ESS3 Earth and Human Activity</td>
<td>29</td>
</tr>
<tr>
<td>Fourth Grade Storyline</td>
<td>30</td>
</tr>
<tr>
<td>4-PS3 Energy</td>
<td>31</td>
</tr>
<tr>
<td>4-PS4 Waves and their Applications in Technologies for Information Transfer</td>
<td>32</td>
</tr>
<tr>
<td>4-LS1 From Molecules to Organisms: Structures and Processes</td>
<td>33</td>
</tr>
<tr>
<td>4-ESS1 Earth’s Place in the Universe</td>
<td>34</td>
</tr>
<tr>
<td>4-ESS2 Earth’s Systems</td>
<td>35</td>
</tr>
<tr>
<td>4-ESS3 Earth and Human Activity</td>
<td>36</td>
</tr>
<tr>
<td>Fifth Grade Storyline</td>
<td>37</td>
</tr>
<tr>
<td>5-PS1 Matter and its Interactions</td>
<td>38</td>
</tr>
<tr>
<td>5-PS2 Motion and Stability: Forces and Interactions</td>
<td>39</td>
</tr>
<tr>
<td>5-PS3 Energy</td>
<td>40</td>
</tr>
<tr>
<td>5-LS1 From Molecules to Organisms: Structures and Processes</td>
<td>41</td>
</tr>
<tr>
<td>5-LS2 Ecosystems: Interactions, Energy, and Dynamics</td>
<td>42</td>
</tr>
<tr>
<td>5-ESS1 Earth’s Place in the Universe</td>
<td>43</td>
</tr>
<tr>
<td>5-ESS2 Earth’s Systems</td>
<td>44</td>
</tr>
<tr>
<td>5-ESS3 Earth and Human Activity</td>
<td>45</td>
</tr>
<tr>
<td>3-5-ETS1 Engineering Design</td>
<td>46</td>
</tr>
<tr>
<td>Middle School Physical Sciences Storyline</td>
<td>47</td>
</tr>
<tr>
<td>Middle School Life Sciences Storyline</td>
<td>49</td>
</tr>
<tr>
<td>Middle School Earth and Space Sciences Storyline</td>
<td>51</td>
</tr>
<tr>
<td>Middle School Engineering Design Storyline</td>
<td>53</td>
</tr>
<tr>
<td>Standard</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>MS-PS1 Matter and Its Interactions</td>
<td>54</td>
</tr>
<tr>
<td>MS-PS2 Motion and Stability: Forces and Interactions</td>
<td>56</td>
</tr>
<tr>
<td>MS-PS3 Energy</td>
<td>58</td>
</tr>
<tr>
<td>MS-PS4 Waves and their Applications in Technologies for Information Transfer</td>
<td>60</td>
</tr>
<tr>
<td>MS-LS1 From Molecules to Organisms: Structures and Processes</td>
<td>61</td>
</tr>
<tr>
<td>MS-LS2 Ecosystems: Interactions, Energy, and Dynamics</td>
<td>63</td>
</tr>
<tr>
<td>MS-LS3 Heredity: Inheritance and Variation of Traits</td>
<td>65</td>
</tr>
<tr>
<td>MS-LS4 Biological Evolution: Unity and Diversity</td>
<td>66</td>
</tr>
<tr>
<td>MS-ESS1 Earth’s Place in the Universe</td>
<td>68</td>
</tr>
<tr>
<td>MS-ESS2 Earth’s Systems</td>
<td>70</td>
</tr>
<tr>
<td>MS-ESS3 Earth and Human Activity</td>
<td>72</td>
</tr>
<tr>
<td>MS-ETS1 Engineering Design</td>
<td>74</td>
</tr>
<tr>
<td>High School Physical Sciences Storyline</td>
<td>75</td>
</tr>
<tr>
<td>High School Life Sciences Storyline</td>
<td>77</td>
</tr>
<tr>
<td>High School Earth and Space Sciences Storyline</td>
<td>79</td>
</tr>
<tr>
<td>High School Engineering Design Storyline</td>
<td>81</td>
</tr>
<tr>
<td>HS-PS1 Matter and Its Interactions</td>
<td>82</td>
</tr>
<tr>
<td>HS-PS2 Motion and Stability: Forces and Interactions</td>
<td>84</td>
</tr>
<tr>
<td>HS-PS3 Energy</td>
<td>86</td>
</tr>
<tr>
<td>HS-PS4 Waves and their Applications in Technologies for Information Transfer</td>
<td>88</td>
</tr>
<tr>
<td>HS-LS1 From Molecules to Organisms: Structures and Processes</td>
<td>90</td>
</tr>
<tr>
<td>HS-LS2 Ecosystems: Interactions, Energy, and Dynamics</td>
<td>92</td>
</tr>
<tr>
<td>HS-LS3 Heredity: Inheritance and Variation of Traits</td>
<td>94</td>
</tr>
<tr>
<td>HS-LS4 Biological Evolution: Unity and Diversity</td>
<td>95</td>
</tr>
<tr>
<td>HS-ESS1 Earth’s Place in the Universe</td>
<td>97</td>
</tr>
<tr>
<td>HS-ESS2 Earth’s Systems</td>
<td>99</td>
</tr>
<tr>
<td>HS-ESS3 Earth and Human Activity</td>
<td>101</td>
</tr>
<tr>
<td>HS-ETS1 Engineering Design</td>
<td>103</td>
</tr>
</tbody>
</table>
Elementary Standards

Students in kindergarten through fifth grade begin to develop an understanding of the four disciplinary core ideas: physical sciences; life sciences; earth and space sciences; and engineering, technology, and applications of science. In the earlier grades, students begin by recognizing patterns and formulating answers to questions about the world around them. By the end of fifth grade, students are able to demonstrate grade-appropriate proficiency in gathering, describing, and using information about the natural and designed world(s). The performance expectations in elementary school grade bands develop ideas and skills that will allow students to explain more complex phenomena in the four disciplines as they progress to middle school and high school. While the performance expectations shown in kindergarten through fifth grade couple particular practices with specific disciplinary core ideas, instructional decisions should include use of many practices that lead to the performance expectations.
Third Grade

The performance expectations in third grade help students formulate answers to questions such as: “What is typical weather in different parts of the world and during different times of the year? How can the impact of weather-related hazards be reduced? How do organisms vary in their traits? How are plants, animals, and environments of the past similar or different from current plants, animals, and environments? What happens to organisms when their environment changes? How do equal and unequal forces on an object affect the object? How can magnets be used?” Third grade performance expectations include PS2, LS1, LS2, LS3, LS4, ESS2, and ESS3 Disciplinary Core Ideas from the NRC Framework. Students are able to organize and use data to describe typical weather conditions expected during a particular season. By applying their understanding of weather-related hazards, students are able to make a claim about the merit of a design solution that reduces the impacts of such hazards. Students are expected to develop an understanding of the similarities and differences of organisms’ life cycles. An understanding that organisms have different inherited traits, and that the environment can also affect the traits that an organism develops, is acquired by students at this level. In addition, students are able to construct an explanation using evidence for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. Students are expected to develop an understanding of types of organisms that lived long ago and also about the nature of their environments. Third graders are expected to develop an understanding of the idea that when the environment changes some organisms survive and reproduce, some move to new locations, some move into the transformed environment, and some die. Students are able to determine the effects of balanced and unbalanced forces on the motion of an object and the cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. They are then able to apply their understanding of magnetic interactions to define a simple design problem that can be solved with magnets. The crosscutting concepts of patterns; cause and effect; scale, proportion, and quantity; systems and system models; interdependence of science, engineering, and technology; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In the third grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in asking questions and defining problems; developing and using models, planning and carrying out investigations, analyzing and interpreting data, constructing explanations and designing solutions, engaging in argument from evidence, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas.
3-PS2 Motion and Stability: Forces and Interactions

Students who demonstrate understanding can:

3-PS2-1. Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. [Clarification Statement: Examples could include an unbalanced force on one side of a ball can make it start moving; and, balanced forces pushing on a box from both sides will not produce any motion at all.] [Assessment Boundary: Assessment is limited to one variable at a time: number, size, or direction of forces. Assessment does not include quantitative force size, only qualitative and relative. Assessment is limited to gravity being addressed as a force that acts on objects down.]

3-PS2-2. Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion. [Clarification Statement: Examples of motion with a predictable pattern could include a child swinging in a swing, a ball rolling back and forth in a bowl, and two children on a see-saw.] [Assessment Boundary: Assessment does not include technical terms such as period and frequency.]

3-PS2-3. Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. [Clarification Statement: Examples of an electric force could include the force on hair from an electrically charged balloon and the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paperclips, and the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects the strength of the force and how the orientation of magnets affects the direction of the magnetic force.] [Assessment Boundary: Assessment is limited to forces produced by objects that can be manipulated by students, and electrical interactions are limited to static electricity.]

3-PS2-4. Define a simple design problem that can be solved by applying scientific ideas about magnets.* [Clarification Statement: Examples of problems could include constructing a latch to keep a door shut and creating a device to keep two moving objects from touching each other.]

Science and Engineering Practices

Asking Questions and Defining Problems

- Asking questions and defining problems in grades 3–5 builds on grades K–2 experiences and progresses to specifying qualitative relationships.
- Ask questions that can be investigated based on patterns such as cause and effect relationships. (3-PS2-3)
- Define a simple problem that can be solved through the development of a new or improved object or tool. (3-PS2-4)

Planning and Carrying Out Investigations

- Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.
- Plan and conduct an investigation collaboratively to produce data as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (3-PS2-1)
- Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution. (3-PS2-2)

Disciplinary Core Ideas

PS2.A: Forces and Motion

- Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object’s speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition of forces are used at this level.) (3-PS2-1)
- The patterns of an object’s motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.) (3-PS2-2)

PS2.B: Types of Interactions

- Objects in contact exert forces on each other. (3-PS2-1)
- Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other. (3-PS2-3),(3-PS2-4)

Crosscutting Concepts

Patterns

- Patterns of change can be used to make predictions. (3-PS2-2)

Cause and Effect

- Cause and effect relationships are routinely identified. (3-PS2-1)
- Cause and effect relationships are routinely identified, tested, and used to explain change. (3-PS2-3)

Connections to Engineering, Technology, and Applications of Science

- Scientific discoveries about the natural world can often lead to new and improved technologies, which are developed through the engineering design process. (3-PS2-4)

Connections to other DCIs in third grade: N/A

Artifact of DCIs across grade-levels:

- **3-PS2.A:** (3-PS2-1); **3-PS2.B:** (3-PS2-1); **3-PS2.C:** (3-PS2-1); **K.ETS1.A:** (3-PS2-4); **1.ESS1.A:** (3-PS2-2); **4.PS4.A:** (3-PS2-2); **4.ETS1.A:** (3-PS2-4);
- **5.PS2.B:** (3-PS2-1); **MS.PS2.A:** (3-PS2-1),(3-PS2-2); **MS.PS2.B:** (3-PS2-3),(3-PS2-4); **MS.ESS1.B:** (3-PS2-1),(3-PS2-2); **MS.ESS2.C:** (3-PS2-1)

Common Core State Standards Connections:

- **ELA/Literacy –**
 - **RI.3.1:** Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-PS2-1),(3-PS2-3)
 - **RI.3.3:** Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. (3-PS2-3)
 - **RI.3.8:** Describe the logical connection between particular sentences and paragraphs in a text (e.g., comparison, cause/effect, first/second/third in a sequence). (3-PS2-3)
 - **W.3.7:** Conduct short research projects that build knowledge about a topic. (3-PS2-1),(3-PS2-2)
 - **W.3.8:** Recall information from experiences or information from print and digital sources; take brief notes on sources and sort evidence into provided categories. (3-PS2-1),(3-PS2-2)
 - **SL.3.3:** Ask and answer questions about information from a speaker, offering appropriate elaboration and detail. (3-PS2-3)

- **Mathematics –**
 - **MP.2:** Reason abstractly and quantitatively. (3-PS2-1)
 - **MP.5:** Use appropriate tools strategically. (3-PS2-1)
 - **MP.7:** Look for and make use of structure. (3-PS2-1)
 - **3.MD.A.2:** Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (3-PS2-1)

* *The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.*

June 2013 ©2013 Achieve, Inc. All rights reserved. 23 of 104
3-LS1 From Molecules to Organisms: Structures and Processes

Students who demonstrate understanding can:

3-LS1-1. Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death. [Clarification Statement: Changes organisms go through during their life form a pattern.] [Assessment Boundary: Assessment of plant life cycles is limited to those of flowering plants. Assessment does not include details of human reproduction.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas*.

Science and Engineering Practices

Developing and Using Models

Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.

- Develop models to describe phenomena. (3-LS1-1)

Disciplinary Core Ideas

LS1.B: Growth and Development of Organisms

- Reproduction is essential to the continued existence of every kind of organism. Plants and animals have unique and diverse life cycles. (3-LS1-1)

Crosscutting Concepts

Patterns

- Patterns of change can be used to make predictions. (3-LS1-1)

Scientific Knowledge is Based on Empirical Evidence

- Science findings are based on recognizing patterns. (3-LS1-1)

Connections to Nature of Science

- Science and Engineering Practices
- Disciplinary Core Ideas
- Crosscutting Concepts

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas*. Integrated and reprinted with permission from the National Academy of Sciences.
3-LS2 Ecosystems: Interactions, Energy, and Dynamics

3-LS2-1. Construct an argument that some animals form groups that help members survive.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K–12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas*.

Science and Engineering Practices
- **Engaging in Argument from Evidence**
 - Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).
 - Construct an argument with evidence, data, and/or a model. (3-LS2-1)

Disciplinary Core Ideas
- **LS2.D: Social Interactions and Group Behavior**
 - Being part of a group helps animals obtain food, defend themselves, and cope with changes. Groups may serve different functions and vary dramatically in size. *(Note: Moved from K–2).* (3-LS2-1)

Crosscutting Concepts
- **Cause and Effect**
 - Cause and effect relationships are routinely identified and used to explain change. (3-LS2-1)

Common Core State Standards Connections:
- **ELA/Literacy – RI.3.1** Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-LS2-1)
- **RI.3.3** Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. (3-LS2-1)
- **W.3.1** Write opinion pieces on topics or texts, supporting a point of view with reasons. (3-LS2-1)
- **Mathematics – MP.4** Model with mathematics. (3-LS2-1)
- **3.NBT** Number and Operations in Base Ten (3-LS2-1)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K–12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.
3-LS3 Heredity: Inheritance and Variation of Traits

Students who demonstrate understanding can:

3-LS3.1. Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms. [Clarification Statement: Patterns are the similarities and differences in traits shared between offspring and their parents, or among siblings. Emphasis is on organisms other than humans.] [Assessment Boundary: Assessment does not include genetic mechanisms of inheritance and prediction of traits. Assessment is limited to non-human animals.]

3-LS3.2. Use evidence to support the explanation that traits can be influenced by the environment. [Clarification Statement: Examples of the environment affecting a trait could include normally tall plants grown with insufficient water are stunted; and, a pet dog that is given too much food and little exercise may become overweight.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

- Analyze and interpret data to make sense of phenomena and in designing multiple solutions to design problems.
- Constructing explanations and design solutions in 3-5 builds on K-2 experiences and progresses to collecting data and conducting multiple trials of qualitative observations.
- When possible and feasible, digital tools should be used.
- Analyze and interpret data to make sense of phenomena using logical reasoning.
- Constructing explanations in 3-5 builds on K-2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena in designing multiple solutions to design problems.
- Use evidence (e.g., observations, patterns) to support an explanation.

Common Core State Standards Connections:

- ELA/Literacy – RI.1.1 Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-LS3-1),(3-LS3-2)
- RI.1.2 Determine the main idea of a text; recount the key details and explain how they support the main idea. (3-LS3-1),(3-LS3-2)
- RI.1.3 Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to sequence, cause/effect. (3-LS3-1),(3-LS3-2)
- W.1.2 Write informative/explanatory texts to examine a topic and convey ideas and information clearly. (3-LS3-1),(3-LS3-2)
- SL.3.4 Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. (3-LS3-1),(3-LS3-2)

- Mathematics – MP.2 Reason abstractly and quantitatively. (3-LS3-1),(3-LS3-2)
- MP.4 Model with mathematics. (3-LS3-1),(3-LS3-2)
- 3.MD.B.4 Generate measurement data by measuring lengths using rulers marked with halves and quarters of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters. (3-LS3-1),(3-LS3-2)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled ”Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.
Students who demonstrate understanding can:

3-LS4-1. Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago. [Clarification Statement: Examples of data could include type, size, and distributions of fossil organisms. Examples of fossils and environments could include marine fossils found on dry land, tropical plant fossils found in Arctic areas, and fossils of extinct organisms.] [Assessment Boundary: Assessment does not include identification of specific fossils or present plants and animals. Assessment is limited to major fossil types and relative ages.]

3-LS4-2. Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. [Clarification Statement: Examples of cause and effect relationships could be plants that have larger thorns than other plants may be less likely to be eaten by predators; and, animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.]

3-LS4-3. Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all. [Clarification Statement: Examples of evidence could include needs and characteristics of the organisms and habitats involved. The organisms and their habitat make up a system in which the parts depend on each other.]

3-LS4-4. Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.* [Clarification Statement: Examples of environmental changes could include changes in land characteristics, water distribution, temperature, food, and other organisms.] [Assessment Boundary: Assessment is limited to a single environmental change. Assessment does not include the greenhouse effect or climate change.]

The performance expectations above were developed using the following elements from the NRC document, A Framework for K-12 Science Education:

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.

- Analyze and interpret data to make sense of phenomena using logical reasoning. (3-LS4-1)
- Constructing Explanations and Designing Solutions

Constructing explanations, and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Use evidence (e.g., observations, patterns) to construct an explanation. (3-LS4-2)
- Engaging in Argument from Evidence

Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).

- Construct an argument with evidence. (3-LS4-3)
- Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem. (3-LS4-4)

Disciplinary Core Ideas

LS2.C: Ecosystem Dynamics, Functioning, and Resilience

- When the environment changes in ways that affect a place’s physical characteristics, temperature, or availability of resources, some organisms survive and reproduce, others move to new locations, yet others move into the transformed environment, and some die. (3-LS4-1)

LS4.A: Evidence of Common Ancestry and Diversity

- Some kinds of plants and animals that once lived on Earth are no longer found anywhere. (Note: moved from K–2; 3-LS4-1)
- Fossils provide evidence about the types of organisms that lived long ago and also about the nature of their environments. (3-LS4-1)

LS4.B: Natural Selection

- Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing. (3-LS4-2)

LS4.C: Adaptation

- For any particular environment, some kinds of organisms survive well, some survive less well, and some cannot survive at all. (3-LS4-3)

LS4.D: Biodiversity and Humans

- Populations live in a variety of habitats, and change in those habitats affects the organisms living there. (3-LS4-4)

Crosscutting Concepts

Cause and Effect

- Cause and effect relationships are routinely identified and used to explain change. (3-LS4-2, 3-LS4-3)
- Scale, Proportion, and Quantity

- Observable phenomena exist from very short to very long time periods. (3-LS4-1)

Systems and System Models

- A system can be described in terms of its components and their interactions. (3-LS4-4)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

- Knowledge of relevant scientific concepts and research findings is important in engineering. (3-LS4-3)

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

- Science assumes consistent patterns in natural systems. (3-LS4-1)

Common Core State Standards Connections:

ELA/Literacy –

RI.3.1. Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-LS4-1), (3-LS4-2), (3-LS4-3)

RI.3.2. Determine the main idea of a text; recount the key details and explain how they support the main idea. (3-LS4-1), (3-LS4-2), (3-LS4-3), (3-LS4-4)

RI.3.3. Describe the relationships between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. (3-LS4-1), (3-LS4-2), (3-LS4-3), (3-LS4-4)

W.3.1. Write opinion pieces on topics or texts, supporting a point of view with reasons. (3-LS4-1), (3-LS4-2), (3-LS4-3), (3-LS4-4)

W.3.2. Write informative/explanatory texts to examine a topic and convey ideas and information clearly, (3-LS4-1), (3-LS4-2), (3-LS4-3), (3-LS4-4)

W.3.3. Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. (3-LS4-1), (3-LS4-2), (3-LS4-3), (3-LS4-4)

SL.3.4. Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. (3-LS4-1), (3-LS4-2), (3-LS4-3), (3-LS4-4)

Mathematics –

MP.2. Reason abstractly and quantitatively. (3-LS4-1), (3-LS4-2), (3-LS4-3), (3-LS4-4)

MP.4. Model with mathematics. (3-LS4-1), (3-LS4-2), (3-LS4-3), (3-LS4-4)

MP.5. Use appropriate tools strategically. (3-LS4-1)

3.MD.B.3. Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. (3-LS4-2), (3-LS4-3)

3.MD.B.4. Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters. (3-LS4-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

June 2013 ©2013 Achieve, Inc. All rights reserved. 27 of 104
3-ESS2 Earth’s Systems

Science and Engineering Practices

Analyzing and Interpreting Data

- Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.
 - Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships. (3-ESS2-1)

Obtaining, Evaluating, and Communicating Information

- Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluating the merit and accuracy of ideas and methods.
 - Obtain and combine information from books and other reliable media to explain phenomena. (3-ESS2-2)

Disciplinary Core Ideas

ESS2.D: Weather and Climate

- Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next. (3-ESS2-1)
- Climate describes a range of an area’s typical weather conditions and the extent to which those conditions vary over years. (3-ESS2-2)

Crosscutting Concepts

Patterns

- Patterns of change can be used to make predictions. (3-ESS2-1,3-ESS2-2)

3-ESS2 Earth’s Systems

Students who demonstrate understanding can:

3-ESS2-1. Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.

- **Clarification Statement:** Examples of data could include average temperature, precipitation, and wind direction. **Assessment Boundary:** Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.

3-ESS2-2. Obtain and combine information to describe climates in different regions of the world.

- **Clarification Statement:** The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education:*

Articulation of DCIs across grade-levels:

- **K.ESS2.D** (3-ESS2-1)
- **4.ESS2.A** (3-ESS2-1)
- **5.ESS2.A** (3-ESS2-1)
- **MS.ESS2.C** (3-ESS2-1,3-ESS2-2)
- **MS.ESS2.D** (3-ESS2-1,3-ESS2-2)

Common Core State Standards Connections:

- **ELA/Literacy**
 - **RI.1.1** Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-ESS2-2)
 - **RI.3.9** Compare and contrast the most important points and key details presented in two texts on the same topic. (3-ESS2-2)
 - **W.3.9** Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. (3-ESS2-2)

- **Mathematics**
 - **MP.2** Reason abstractly and quantitatively. (3-ESS2-1,3-ESS2-2)
 - **MP.4** Model with mathematics. (3-ESS2-1,3-ESS2-2)
 - **MP.5** Use appropriate tools strategically. (3-ESS2-1)
 - **3.MD.A.2** Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (3-ESS2-1)
 - **3.MD.B.3** Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in bar graphs. (3-ESS2-1)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

June 2013 ©2013 Achieve, Inc. All rights reserved.

28 of 104
3-ESS3 Earth and Human Activity

Students who demonstrate understanding can:

3-ESS3-1. Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.*

[Clarification Statement: Examples of design solutions to weather-related hazards could include barriers to prevent flooding, wind resistant roofs, and lightning rods.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices
Engaging in Argument from Evidence
Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).
- Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem. (3-ESS3-1)

Disciplinary Core Ideas
ESS3.B: Natural Hazards
- A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take steps to reduce their impacts. (3-ESS3-1) (Note: This Disciplinary Core Idea is also addressed by 4-ESS3-2.)

Crosscutting Concepts
Cause and Effect
- Cause and effect relationships are routinely identified, tested, and used to explain change. (3-ESS3-1)

Influence of Engineering, Technology, and Science on Society and the Natural World
- Engineers improve existing technologies or develop new ones to increase their benefits (e.g., better artificial limbs), decrease known risks (e.g., seatbelts in cars), and meet societal demands (e.g., cell phones). (3-ESS3-1)

Science is a Human Endeavor
- Science affects everyday life. (3-ESS3-1)

Connections to other DCIs in third grade: N/A
Articulation of DCIs across grade-levels: K.ESS3.B (3-ESS3-1); K.ETS1.A (3-ESS3-1); 4.ESS3.B (3-ESS3-1); 4.ETS1.A (3-ESS3-1); MS.ESS3.B (3-ESS3-1)

Common Core State Standards Connections:
ELA/Literacy –
W.3.1 Write opinion pieces on topics or texts, supporting a point of view with reasons. (3-ESS3-1)
W.3.7 Conduct short research projects that build knowledge about a topic. (3-ESS3-1)
Mathematics –
MP.2 Reason abstractly and quantitatively. (3-ESS3-1)
MP.4 Model with mathematics. (3-ESS3-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.