Topic Arrangements of the Next Generation Science Standards

At the beginning of the NGSS development process, in order to eliminate potential redundancy, seek an appropriate grain size, and seek natural connections among the Disciplinary Core Ideas (DCIs) identified within the Framework for K-12 Science Education, the writers arranged the DCIs into topics around which to develop the standards. This structure provided the original basis of the standards, and is preferred by many states. However, the coding structure of individual performance expectations reflects the DCI arrangement in the Framework.

Due to the fact that the NGSS progress toward end-of-high school core ideas, the standards may be rearranged in any order within a grade level.

Table of Contents

Elementary Introduction ...3
Kindergarten Storyline ...4
K.Forges and Interactions: Pushes and Pulls5
K.Interdependent Relationships in Ecosystems: Animals, Plants, and Their Environment6
K.Weather and Climate ...7
First Grade Storyline ...8
1.Waves: Light and Sound ..9
1. Structure, Function, and Information Processing10
1.Space Systems: Patterns and Cycles ..11
Second Grade Storyline ...12
2. Structure and Properties of Matter ..13
2. Interdependent Relationships in Ecosystems14
2. Earth’s Systems: Processes that Shape the Earth15
K-2. Engineering Design ..16
Third Grade Storyline ...17
3. Forces and Interactions ..18
3. Interdependent Relationships in Ecosystems19
3. Inheritance and Variation of Traits: Life Cycles and Traits20
3. Weather and Climate ...21
Fourth Grade Storyline ...22
4. Energy ...23
4. Waves: Waves and Information ..24
4. Structure, Function, and Information Processing25
4. Earth’s Systems: Processes that Shape the Earth26
Fifth Grade Storyline ...27
5. Structure and Properties of Matter ...28
5. Matter and Energy in Organisms and Ecosystems29
5. Earth’s Systems ...30
3-5. Engineering Design ..32
Middle School Physical Sciences Storyline33
Middle School Life Sciences Storyline34
Middle School Earth and Space Sciences Storyline35
Middle School Engineering Design Storyline36
MS. Structure and Properties of Matter39
MS. Chemical Reactions ...42
MS. Forces and Interactions ...43
MS. Energy ...45
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS. Waves and Electromagnetic Radiation</td>
<td>47</td>
</tr>
<tr>
<td>MS. Structure, Function, and Information Processing</td>
<td>48</td>
</tr>
<tr>
<td>MS. Matter and Energy in Organisms and Ecosystems</td>
<td>50</td>
</tr>
<tr>
<td>MS. Interdependent Relationships in Ecosystems</td>
<td>52</td>
</tr>
<tr>
<td>MS. Growth, Development, and Reproduction of Organisms</td>
<td>53</td>
</tr>
<tr>
<td>MS. Natural Selection and Adaptations</td>
<td>55</td>
</tr>
<tr>
<td>MS. Space Systems</td>
<td>57</td>
</tr>
<tr>
<td>MS. History of Earth</td>
<td>58</td>
</tr>
<tr>
<td>MS. Earth’s Systems</td>
<td>59</td>
</tr>
<tr>
<td>MS. Weather and Climate</td>
<td>60</td>
</tr>
<tr>
<td>MS. Human Impacts</td>
<td>61</td>
</tr>
<tr>
<td>MS. Engineering Design</td>
<td>63</td>
</tr>
<tr>
<td>High School Physical Sciences Storyline</td>
<td>65</td>
</tr>
<tr>
<td>High School Life Sciences Storyline</td>
<td>68</td>
</tr>
<tr>
<td>High School Earth and Space Sciences Storyline</td>
<td>70</td>
</tr>
<tr>
<td>High School Engineering Design Storyline</td>
<td>73</td>
</tr>
<tr>
<td>HS. Structure and Properties of Matter</td>
<td>74</td>
</tr>
<tr>
<td>HS. Chemical Reactions</td>
<td>76</td>
</tr>
<tr>
<td>HS. Forces and Interactions</td>
<td>78</td>
</tr>
<tr>
<td>HS. Energy</td>
<td>80</td>
</tr>
<tr>
<td>HS. Waves and Electromagnetic Radiation</td>
<td>82</td>
</tr>
<tr>
<td>HS. Structure and Function</td>
<td>84</td>
</tr>
<tr>
<td>HS. Matter and Energy in Organisms and Ecosystems</td>
<td>85</td>
</tr>
<tr>
<td>HS. Interdependent Relationships in Ecosystems</td>
<td>87</td>
</tr>
<tr>
<td>HS. Inheritance and Variation of Traits</td>
<td>89</td>
</tr>
<tr>
<td>HS. Natural Selection and Evolution</td>
<td>91</td>
</tr>
<tr>
<td>HS. Space Systems</td>
<td>93</td>
</tr>
<tr>
<td>HS. History of Earth</td>
<td>95</td>
</tr>
<tr>
<td>HS. Earth’s Systems</td>
<td>97</td>
</tr>
<tr>
<td>HS. Weather and Climate</td>
<td>99</td>
</tr>
<tr>
<td>HS. Human Sustainability</td>
<td>100</td>
</tr>
<tr>
<td>HS. Engineering Design</td>
<td>102</td>
</tr>
</tbody>
</table>
Elementary Standards

Students in kindergarten through fifth grade begin to develop an understanding of the four disciplinary core ideas: physical sciences; life sciences; earth and space sciences; and engineering, technology, and applications of science. In the earlier grades, students begin by recognizing patterns and formulating answers to questions about the world around them. By the end of fifth grade, students are able to demonstrate grade-appropriate proficiency in gathering, describing, and using information about the natural and designed world(s). The performance expectations in elementary school grade bands develop ideas and skills that will allow students to explain more complex phenomena in the four disciplines as they progress to middle school and high school. While the performance expectations shown in kindergarten through fifth grade couple particular practices with specific disciplinary core ideas, instructional decisions should include use of many practices that lead to the performance expectations.
First Grade

The performance expectations in first grade help students formulate answers to questions such as: “What happens when materials vibrate? What happens when there is no light? What are some ways plants and animals meet their needs so that they can survive and grow? How are parents and their children similar and different? What objects are in the sky and how do they seem to move?” First grade performance expectations include PS4, LS1, LS3, and ESS1 Disciplinary Core Ideas from the NRC Framework. Students are expected to develop understanding of the relationship between sound and vibrating materials as well as between the availability of light and ability to see objects. The idea that light travels from place to place can be understood by students at this level through determining the effect of placing objects made with different materials in the path of a beam of light. Students are also expected to develop understanding of how plants and animals use their external parts to help them survive, grow, and meet their needs as well as how behaviors of parents and offspring help the offspring survive. The understanding is developed that young plants and animals are like, but not exactly the same as, their parents. Students are able to observe, describe, and predict some patterns of the movement of objects in the sky. The crosscutting concepts of patterns; cause and effect; structure and function; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In the first grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in planning and carrying out investigations, analyzing and interpreting data, constructing explanations and designing solutions, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas.
1. Waves: Light and Sound

Students who demonstrate understanding can:

1-PS4-1. Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate. [Clarification Statement: Examples of vibrating materials that make sound could include tuning forks and plucking a stretched string. Examples of how sound can make matter vibrate could include holding a piece of paper near a speaker making sound and holding an object near a vibrating tuning fork.]

1-PS4-2. Make observations to construct an evidence-based account that objects can be seen only when illuminated. [Clarification Statement: Examples of observations could include those made in a completely dark room, a pinhole box, and a video of a cave explorer with a flashlight. Illumination could be from an external light source or by an object giving off its own light.]

1-PS4-3. Plan and conduct an investigation to determine the effect of placing objects made with different materials in the path of a beam of light. [Clarification Statement: Examples of materials could include those that are transparent (such as clear plastic), translucent (such as wax paper), opaque (such as cardboard), and reflective (such as a mirror).] [Assessment Boundary: Assessment does not include the speed of light.]

1-PS4-4. Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance. [Clarification Statement: Examples of devices could include a light source to send signals, paper cup and string "telephones," and a pattern of drum beats.] [Assessment Boundary: Assessment does not include technological details for how communication devices work.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.

- Plan and conduct investigations collaboratively to produce data to serve as the basis for evidence to answer a question. (1-PS4-1), (1-PS4-3)

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.

- Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena (1-PS4-2)
- Use tools and materials provided to design a device that solves a specific problem. (1-PS4-4)

Connections to Nature of Science

Scientific Investigations Use a Variety of Methods
- Science investigations begin with a question. (1-PS4-1)
- Scientists use different ways to study the world. (1-PS4-1)

Disciplinary Core Ideas

PS4.A: Wave Properties
- Sound can make matter vibrate, and vibrating matter can make sound. (1-PS4-1)

PS4.B: Electromagnetic Radiation
- Objects can be seen if light is available to illuminate them or if they give off their own light. (1-PS4-2)
- Some materials allow light to pass through them, others allow only some light through and others block all the light and create a dark shadow on any surface beyond them, where the light cannot reach. Mirrors can be used to redirect a light beam. (Boundary: The idea that light travels from place to place is developed through experiences with light sources, mirrors, and shadows, but no attempt is made to discuss the speed of light.) (1-PS4-3)

PS4.C: Information Technologies and Instrumentation
- People also use a variety of devices to communicate (send and receive information) over long distances. (1-PS4-4)

Crosscutting Concepts

Cause and Effect
- Simple tests can be designed to gather evidence to support or refute student ideas about causes. (1-PS4-1), (1-PS4-2), (1-PS4-3)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science, on Society and the Natural World
- People depend on various technologies in their lives; human life would be very different without technology. (1-PS4-4)

Articulation of DCIs across grade levels: K.ETS1.A (1-PS4-4); 2-ETS1.B (1-PS4-4); 4-PS4.C (1-PS4-4); 4-PS4.B (1-PS4-2); 4.CT1.A (1-PS4-4)

Common Core State Standards Connections:

ELA/Literacy –

W.1.2 Write informative/explanatory texts in which they name a topic, supply some facts about the topic, and provide some sense of closure. (1-PS4-2)

W.1.7 Participate in shared research and writing projects (e.g., explore a number of "how-to" books on a given topic and use them to write a sequence of instructions). (1-PS4-1), (1-PS4-2), (1-PS4-3), (1-PS4-4)

Mathematics –

MP.5 Use appropriate tools strategically. (1-PS4-4)

1.MD.1 Order three objects by length; compare the lengths of two objects indirectly by using a third object. (1-PS4-1)

1.MD.2 Express the length of an object as a whole number of length units, by layering multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. (1-PS4-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

June 2013
©2013 Achieve, Inc. All rights reserved.
1. Structure, Function, and Information Processing

Science and Engineering Practices

Constructing Explanations and Designing Solutions
- **Constructing explanations and designing solutions in K–2** builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
 - Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena. (1-LS1-1)
 - Use materials to design a device that solves a specific problem or a solution to a specific problem. (1-LS1-1)

Obtaining, Evaluating, and Communicating Information
- **Obtaining, evaluating, and communicating information in K–2** builds on prior experiences and uses observations and texts to communicate new information.
 - Read grade-appropriate texts and use media to obtain scientific information to determine patterns in the natural world. (1-LS1-2)

Crosscutting Concepts

Patterns
- All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive and grow. (1-LS1-1)

Structure and Function
- Adult plants and animals can have young. In many kinds of animals, parents and the offspring themselves engage in behaviors that help the offspring to survive. (1-LS1-2)

Information Processing
- Animals respond to stimuli and convey different kinds of information needed for survival. Animals respond to these inputs with behaviors that help them survive. Plants also respond to some external inputs. (1-LS1-1)

Inheritance of Traits
- Young animals are very much, but not exactly, like their parents. Plants also are very much, but not exactly, like their parents. (1-LS1-3)

Variation of Traits
- Individuals of the same kind of plant or animal are recognizable as similar but can also vary in many ways. (1-LS1-3)

Disciplinary Core Ideas

LS1.A: Structure and Function
- All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive and grow. (1-LS1-1)

LS1.B: Growth and Development of Organisms
- Adult plants and animals can have young. In many kinds of animals, parents and the offspring themselves engage in behaviors that help the offspring to survive. (1-LS1-2)

LS1.D: Information Processing
- Animals respond to stimuli and convey different kinds of information needed for growth and survival. Animals respond to these inputs with behaviors that help them survive. Plants also respond to some external inputs. (1-LS1-1)

LS3.A: Inheritance of Traits
- Young animals are very much, but not exactly, like their parents. Plants also are very much, but not exactly, like their parents. (1-LS1-3)

LS3.B: Variation of Traits
- Individuals of the same kind of plant or animal are recognizable as similar but can also vary in many ways. (1-LS1-3)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

June 2013 ©2013 Achieve, Inc. All rights reserved. 10 of 102
1.Space Systems: Patterns and Cycles

Students who demonstrate understanding can:

1-ESS1-1. Use observations of the sun, moon, and stars to describe patterns that can be predicted. [Clarification Statement: Examples of patterns could include that the sun and moon appear to rise in one part of the sky, move across the sky, and set; and stars other than our sun are visible at night but not during the day.] [Assessment Boundary: Assessment of star patterns is limited to stars being seen at night and not during the day.]

1-ESS1-2. Make observations at different times of year to relate the amount of daylight to the time of year. [Clarification Statement: Emphasis is on relative comparisons of the amount of daylight in the winter to the amount in the spring or fall.] [Assessment Boundary: Assessment is limited to relative amounts of daylight, not quantifying the hours or time of daylight.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education:*

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning and Carrying Out Investigations</td>
<td>ESS1.A: The Universe and Its Stars</td>
<td>Patterns</td>
</tr>
<tr>
<td>Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.</td>
<td>• Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted. (1-ESS1-1)</td>
<td>• Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (1-ESS1-1),(1-ESS1-2)</td>
</tr>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>ESS1.B: Earth and the Solar System</td>
<td>Connections to Nature of Science</td>
</tr>
<tr>
<td>Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.</td>
<td>• Seasonal patterns of sunrise and sunset can be observed, described, and predicted. (1-ESS1-2)</td>
<td>Scientific Knowledge Assumes an Order and Consistency in Natural Systems</td>
</tr>
<tr>
<td>• Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (1-ESS1-1)</td>
<td></td>
<td>• Science assumes natural events happen today as they happened in the past. (1-ESS1-1)</td>
</tr>
</tbody>
</table>

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

©2013 Achieve, Inc. All rights reserved.