## APPROVED PATHWAY:

- Includes
   minimum of three
   secondary-level
   credits.
- 2. Includes a workbased element.
- 3. Consists of a sequence:
  - Introductory-level.
  - Technical-level.
  - Application-level courses.
- 4. Supporting documentation includes Articulation Agreement(s), Certification, Program Improvement Plan and a Program of Study.
- Technical-level and Application-level courses receive .5 state-weighted funding in an approved CTE pathway.



TRANSPORTATION CAREER CLUSTER DESIGN

# **Aviation Maintenance Pathway**

**Avionics Strand** 

### **INTRODUCTORY LEVEL**

| Title                      | Code  | Credit    |
|----------------------------|-------|-----------|
| Introduction to Industrial |       |           |
| Technology                 | 38001 | .5 credit |

| Title                        | Code  | Credit    |
|------------------------------|-------|-----------|
| Production Blueprint Reading | 21108 | .5 credit |

## **TECHNICAL LEVEL**

| Title                  | Code  | Credit    |
|------------------------|-------|-----------|
| *Hand and Power Tools  | 40400 | .5 credit |
| *Aviation Fundamentals | 40410 | .5 credit |
| Aviation Systems       | 40420 | 1 credit  |

| 7 11 10 1 11 10 5 11 10 11 10 |       |           |
|-------------------------------|-------|-----------|
| Title                         | Code  | Credit    |
| Foundations of Electronics    | 21201 | 1 credit  |
| Engine Maintenance Strand     |       |           |
| Title                         | Code  | Credit    |
| Foundations of Electronics    | 21201 | 1 credit  |
|                               | 21201 | i ci caic |

### **APPLICATION LEVEL**

| Avionics Strand         |       |           |
|-------------------------|-------|-----------|
| Title                   | Code  | Credit    |
| AC Electronics          | 40450 | .5 credit |
| DC Electronics          | 40460 | .5 credit |
| Microcontrollers        | 40470 | 1 credit  |
| Integrated Circuits     | 40480 | 1 credit  |
| Drones                  | 40490 | 1 credit  |
| Digital Electronics     | 21008 | 1 credit  |
| Workplace Experience in |       |           |
| Engineering             | 41048 | .5 credit |
| Workplace Experience    | 21048 | 1 credit  |

| * Courses required for Pathway approval. |
|------------------------------------------|

#### **Engine Maintenance Strand** Code Credit Aviation Engine Performance I 40500 1 credit 40510 Aviation Engine Performance II 1 credit Aviation Material Processes 40520 1 credit Aviation Pneumatics and Hydraulics 40530 1 credit Workplace Experience in Engineering 41048 .5 credit Workplace Experience 21048 1 credit

#### KANSAS STATE CAREER CLUSTER COMPETENCY PROFILE

ENERGY PATHWAY (C.I.P. 17.2071)

| STUDENT       |  |
|---------------|--|
| Rating Scale: |  |

- 3 Proficient Achievement
- 2 Limited Achievement
- 1 Inadequate Achievement
- 0 No Exposure

#### **ENGINEERING CLUSTER**

| Graduation Date I certify that the student has received training in the areas indicated. |
|------------------------------------------------------------------------------------------|
| Instructor Signature                                                                     |
| Instructor Signature                                                                     |
| Instructor Signature                                                                     |
| Instructor Signature                                                                     |

## COMMON CAREER TECHNICAL CORE – CAREER READY STANDARDS

## (To be taught in all courses in the approved pathway)

- 1. Act as a responsible and contributing citizen and employee
- 2. Apply appropriate academic and technical skills
- 3. Attend to personal health and financial well-being
- Communicate clearly, effectively and with reason
- 5. Consider the environmental, social and economic impacts of decisions
- 6. Demonstrate creativity and innovation
- 7. Employ valid and reliable research strategies
- 8. Utilize critical thinking to make sense of problems and persevere in solving them.
- Model integrity, ethical leadership and effective management
- 10. Plan education and career path aligned to personal goals
- 11. Use technology to enhance productivity

12. Work productively in teams while using cultural/global competence

## COMMON CAREER TECHNICAL CORE – STEM CLUSTER STANDARDS (To be taught in all courses in the approved pathway)

- Apply engineering skills in a project that requires project management, process control and quality assurance.
- 2. Use technology to acquire, manipulate, analyze and report data.
- Describe and follow safety, health and environmental standards related to science, technology, engineering and mathematics (STEM) workplaces.
- Understand the nature and scope of the Science, Technology, Engineering & Mathematics Career Cluster and the role of STEM in society and the economy.
- Demonstrate an understanding of the breadth of career opportunities and means to those opportunities in each of the Science, Technology, and Engineering & Mathematics Career Pathways.
- Demonstrate technical skills needed in a chosen STEM field.

## INTRODUCTORY LEVEL COURSES

## 38001-INTRODUCTION TO INDUSTRIAL TECHNOLOGY (.5 Credit) An

introductory level course designed to instruct students in the basic skills necessary to all occupations in the Construction, Manufacturing & Transportation areas.

## 4 3 2 1 0 1. **Basic Safety**

- -Identify causes of accidents and the impact of accident costs.
- Follow safe behavior procedures on and around ladders, scaffolds and stairs.
- -Follow safe behavior procedures around electrical hazards.
- -Demonstrate the use, care and inspection of appropriate personal protective equipment (PPE)
- -Explain the importance of hazard communications (HazCom) and material safety data sheets (MSDSs).
- -Respond to hazardous-materials and hazardous-waste emergency situations

- in accordance with regulatory requirements.
- Follow safety procedures required for lifting heavy objects.
- -Demonstrate a working knowledge of safety education, environment, and enforcement for life and work.
- Apply safe practices while using tools and equipment.
- -Apply safe practices for housekeeping, dress, fire, chemicals & personal protection while working in a shop.
- -Describe fire prevention and firefighting techniques.
- -Explain the purpose of OSHA and how it promotes safety on the job.

#### 43210 2. Industrial Math

- -Add, subtract, multiply, and divide whole numbers, fractions, decimals and percentages.
- -Use a standard ruler, a metric ruler, and a measuring tape to measure.
- -Demonstrate conversion skills for decimals and fractions.
- -Recognize and perform calculations using metric units of length, weight, volume and temperature.

#### 43210 3. Hand Tools

- -Recognize and identify some of the basic hand tools and their proper uses in industrial trades.
- -Demonstrate the safe use of common hand tools.

#### 4 3 2 1 0 4. Power Tools

- -Recognize and identify some of the basic power tools and their proper uses in the industrial trades.
- -Demonstrate the safe use of common power tools.
- -Perform preventive maintenance on basic power tools used in the industrial trades.

#### 43210 5. Blueprint Reading

- -Perform the drafting principles needed to draw the basic geometric shapes.
- -Develop a pictorial sketch of an object.
- -Develop a multi-view drawing.
- -Identify basic symbols used in blueprints.
- -Identify various types of blueprint views used in Architecture, Construction, Manufacturing and Engineering.

#### 43210 6. Communication Skills

- -Interpret information and follow instructions presented in both verbal and written form.
- -Communicate effectively in on-the-job situations using verbal and written skills in various delivery modes (face-to-face, paper, & electronic).
- -Create and complete various written documents used in industrial trades.
- -Demonstrate knowledge and use of computer systems and word processing software in effective communication.

#### 4 3 2 1 0 7. Employability Skills

- -Create and utilize employment documents including a resume and portfolio.
- -Demonstrate job seeking and interview skills.
- -Understand and respond to performance reviews.

#### 4 3 2 1 0 8. 21st Century/Foundation Skills

- -Demonstrate critical thinking skills and the ability to solve problems using those skills.
- -Define effective relationship skills.
- -Demonstrate a working knowledge of workplace issues such as sexual harassment, stress, and substance abuse.
- -Demonstrate the ability to achieve

common goals through team work

#### 43210 8. Materials Handling

- -Verify that health, safety, environmental and government regulations are met.
- -Recognize hazards and follow safety procedures required for materials handling.
- -Demonstrate ability to load and unload materials properly and safely.

### 21108 - PRODUCTION BLUEPRINT

**READING** (.5 Credit) An introductory level course to provide students with the knowledge and ability to interpret the lines, symbols, and conventions of blueprints from a variety of industrial applications.

- 4 3 2 1 0 1. Identify symbols associated with blueprints
- 43210 2. Interpret work from multiview drawings
- 4 3 2 1 0 3. Interpret size and location of features
- 4 3 2 1 0 4. Visualizing shapes and objects in multiple views
- 4 3 2 1 0 5. Ability to convert fractions and decimals proficiently
- 4 3 2 1 0 6. Interpret inch and metric drawings
- 4 3 2 1 0 7. Demonstrate legend and note reading skills
- 4 3 2 1 0 8. Interpret basic geometric dimensioning and tolerancing terminology
- 4 3 2 1 0 9. Identify different views utilized in blueprint reading
- 4 3 2 1 0 10. Identify orthographic projection such as lines and symbols for electrical, piping, mechanical, architectural, welding, and machining prints

### TECHNICAL LEVEL COURSES

## 40400 - Hand & Power Tools (.5 credit)

Provides technical knowledge used in Aviation and Manufacturing area related to hand and power tools.

- 3 2 1 0 1. Apply basic concepts and terminology to precision instruments
- 3 2 1 0 2. Utilize precision instruments
- 3 2 1 0 3. Demonstrate safety procedures used with portable and stationary electrical equipment used in manufacturing
- 3 2 1 0 4. Utilize portable and stationary electrical equipment used in manufacturing
- 3 2 1 0 5. Explain procedures for using the correct electrical tools based on project specifications
- 3 2 1 0 6. Describe and understand how to drill, deburr and chamfer quality holes.
- 3 2 1 0 7. Describe and understand the use of power and pneumatic hand tools used in manufacturing
- 3 2 1 0 8. Demonstrate how to safely use power and pneumatic hand tools used in manufacturing.
- 3 2 1 0 9. Identify drilling and countersinking techniques used in manufacturing
- 3 2 1 0 10. Identify fasteners used in the manufacturing industry

## 40410 - Aviation Fundamentals (.5

credit) \*Course Required for Pathway Approval. An Introduction to Aviation fundamentals related to materials, processes, and history of Aviation.

- 3 2 1 0 1. Describe the timeline of aviation history
- 3 2 1 0 2. Identify and discuss primary assembles/structures and their functions
- 3 2 1 0 3. Describe the principles of flight
- 3 2 1 0 4. Interpret how the mechanical systems and

- the design of an airplane impact flight characteristics
- 3 2 1 0 5. Identify and discuss airplanes based on their configuration
- 3 2 1 0 6. Describe and discuss the types of materials used on an airplane
- 3 2 1 0 7. Identify the methods of airplane construction
- 3 2 1 0 8. Compare and contrast aviation manufacturing processes
- 3 2 1 0 9. Identify and describe the impact of corrosion on airplane
- 3 2 1 0 10. Interpret the purpose and importance of regulation in the aviation industry
- 3 2 1 0 11. Discuss the usage of statistical process control in relationship to quality concepts in the aerospace industry.
- 3 2 1 0 12. Discuss and describe the history of the quality movement in manufacturing
- 3 2 1 0 13. Employ basic lean manufacturing concepts for the aerospace industry

## 40420 - Aviation Systems (1 credit)

Provides students with an in-depth knowledge of the major systems and components of an Aircraft.

- 3 2 1 0 1. Describe the timeline of aviation history
- 3 2 1 0 2. Identify and discuss primary assembles/structures and their functions
- 3 2 1 0 3. Describe the principles of flight
- 3 2 1 0 4. Interpret how the mechanical systems and the design of an airplane impact flight characteristics
- 3 2 1 0 5. Identify and discuss airplane based on their configuration
- 3 2 1 0 6. Describe and discuss the types of materials used on an airplane
- 3 2 1 0 7. Identify the methods of airplane construction
- 3 2 1 0 8. Calculate the manufacturing cost concepts as they relate to aviation

- 3 2 1 0 9. Describe the manufacturing systems management and control
- 3 2 1 0 10. Identify and discuss manufacturing processes and technologies control
- 3 2 1 0 11. Identify producibility concepts in aviation manufacturing
- 3 2 1 0 12. Describe and discuss electrical systems in aircraft and their functions
- 3 2 1 0 13. Describe and discuss avionics systems in aircraft and their functions
- 3 2 1 0 14. Describe and discuss flight control system in aircraft and their functions
- 3 2 1 0 15. Describe and discuss environmental control systems in aircraft and their functions
- 3 2 1 0 16. Describe and discuss door systems in aircraft and their functions
- 3 2 1 0 17. Describe and discuss hydraulic systems in aircraft and their functions
- 3 2 1 0 18. Describe and discuss pneumatic systems in aircraft and their functions
- 3 2 1 0 19. Describe and discuss mechanical components in aircraft and their functions
- 3 2 1 0 20. Describe and discuss landing gear systems in aircraft and their functions
- 3 2 1 0 21. Describe and discuss windows systems in aircraft and their functions
- 3 2 1 0 22. Describe and discuss fuel systems in aircraft and their functions
- 3 2 1 0 23. Describe and discuss propulsion systems in aircraft and their functions
- 3 2 1 0 24. Describe and discuss Anti Ice and De-ice systems in aircraft and their functions

## 21201 Foundations of Electronics (1

credit)

#### **Lab Practices**

- 3210 1. Apply proper OSHA safety standards
- 3210 2. Demonstrate acceptable soldering and desoldering techniques.

#### **Demonstrate Proficiency in DC Circuits**

- 3210 3. Relate, identify, and apply Ohm's law to voltage, current, resistance, power, and energy.
- 3210 4. Read and interpret color codes and symbols to identify electrical components and values.
- 3210 5. Measure properties of a circuit using DMM meters, oscilloscopes, and power supplies.
- 3210 6. Compute, measure, apply, construct, and verify Ohm's law to operation of series circuits.
- 3210 7. Compute, measure, apply, construct, and verify Ohm's law to operation of parallel circuits.
- 3210 8. Compute, measure, apply, construct, and verify Ohm's law to operation of seriesparallel circuits.
- 3210 9. Identify, define, construct, verify, and troubleshoot loaded and unloaded voltage divider circuits.
- 3210 10. Apply, construct, and verify the operation of DC circuits that demonstrate the maximum power transfer theory.
- 3210 11. Define magnetic properties of circuits and devices.
- 3210 12. Determine, define, identify, and troubleshoot RC and RL time constant circuits.
- 3210 13. Define basic motor theory and operation.

#### **Demonstrate Proficiency in AC Circuits**

- 3210 14. Identify, analyze, and measure AC signals.
- 3210 15. Define, construct, verify, and troubleshoot AC capacitive circuits.
- 3210 16. Define, construct, verify, and troubleshoot AC inductive circuits.
- 3210 17. Construct, verify, and troubleshoot AC circuits utilizing transformers.
- 3210 18. Define, construct, and verify series and parallel resonant circuits.
- 3210 19. Define, construct, verify, and troubleshoot

filter circuits.

3210 20. Set up and operate DVMs, power supplies, oscilloscopes, and frequency counters for AC circuits.

## 40430 - Aviation Engine Basics (1 Credit)

(Engine Maintenance Strand only) A comprehensive, technical level course designed to instruct students in the principles and concepts related to basic engine operation.

- 3 2 1 0 1. Identify the parts of a cylinder and of a crankshaft
- 3 2 1 0 2. Identify and inspect various types of bearings.
- 3 2 1 0 3. Remove and replace a stud
- 3 2 1 0 4. Install piston and/or knuckle pin(s).
- 3 2 1 0 5. Install cylinder assembly on an engine.
- 3 2 1 0 6. Illustrate reciprocating engine theory of operation.
- 3 2 1 0 7. Describe basic radial engine design and components
- 3 2 1 0 8. Demonstrate Firing order of a reciprocating engine
- 3 2 1 0 9. Analyze probable cause and removal of a hydraulic lock.
- 3 2 1 0 10. Describe Valve adjustment on a radial engine.
- 3 2 1 0 11. Compare and contrast the purpose of master and articulating rods
- 3 2 1 0 12. Identify various components installed on an engine.
- 3 2 1 0 13. Verify proper operation of a reciprocating engine
- 3 2 1 0 14. Identify Induction system leak indications.
- 3 2 1 0 15. Utilize reciprocating engine maintenance procedures
- 3 2 1 0 16. Identify Procedures for inspecting various engine components during an overhaul.
- 3 2 1 0 17. Ensure correct installation of piston rings

- 3 2 1 0 18. Diagram the purpose/function/operation of various reciprocating engine components
- 3 2 1 0 19. Summarize Inspection requirements for an engine fuel system.
- 3 2 1 0 20. Complete checks of fuel systems to verify proper operation.
- 3 2 1 0 21. Troubleshoot an engine fuel system.
- 3 2 1 0 22. Analyze the Procedure for inspection of an engine driven fuel pump for leaks and security.
- 3 2 1 0 23. Operate one or more types of fuel pumps
- 3 2 1 0 24. Operate one or more types of fuel valves.
- 3 2 1 0 25. Identify components of an engine fuel system.
- 3 2 1 0 26. Remove and/or install an engine-driven fuel pump.
- 3 2 1 0 27. Inspect a main fuel filter assembly for leaks.
- 3 2 1 0 28. Inspect fuel boost pumps for correct pressure.
- 3 2 1 0 29. Remove and/or install a fuel boost pump.
- 3 2 1 0 30. Inspect engine fuel system fluid lines and/or components.
- 3 2 1 0 31. Remove, clean, and/or replace an engine fuel strainer.
- 3 2 1 0 32. Illustrate meaning of prefixes such as micro, mega, kilo, and milli as used in expressing electrical quantities.
- 3 2 1 0 33. Compare differences between straight mineral oil, ashless dispersant oil, and synthetic oil.
- 3 2 1 0 34. Differentiate between types of oil used for different climates.
- 3 2 1 0 35. Describe the functions of an engine oil.
- 3 2 1 0 36. Identify proper lubricants.
- 3 2 1 0 37. Explain the servicing of the lubrication system.

## APPLICATION LEVEL COURSES

### **AVIONICS STRAND**

- **40450 AC Electronics** (.5 credit) Teach the fundamental concepts of Alternating Current.
- 3 2 1 0 1. Apply and relate Ohm's Law
- 3 2 1 0 2. Read and interpret load balancing and symbols for AC systems
- 3 2 1 0 3. Identify properties of an AC signal
- 3 2 1 0 4. Define peak, peak-to-peak, average, and RMS voltage and current.
- 3 2 1 0 5. Define resistance, receptance, and impedance
- 3 2 1 0 6. Define RMS power, apparent power, true power, and reactive power
- 3 2 1 0 7. Analyze and measure AC signals using oscilloscope, frequency meter, and generator
- 3 2 1 0 8. Define the characteristics of AC alternators, single-phase, and three-phase motors
- 3 2 1 0 9. Construct and Verify the operation of AC capacitive Circuits
- 3 2 1 0 10. Construct and Verify the operation of AC Inductive Circuits
- 3 2 1 0 11. Construct and Verify the Operation of AC circuits using Transformers
- 3 2 1 0 12. Construct and Verify the operation of Passive Filter Circuits
- 3 2 1 0 13. Troubleshoot differentiator and integrator circuits

## 40460 - DC Electronics (.5 credit) Teach )

- Teach the fundamental concepts of Direct Current.
- 3 2 1 0 1. Define voltage, current, resistance, power, and energy
- 3 2 1 0 2. Apply and relate Ohm's Law
- 3 2 1 0 3. Read and interpret color codes and

- symbols to identify resistive electrical components and values.
- 3 2 1 0 4. Measure electrical properties of a circuit using a digital multimeter circuit
- 3 2 1 0 5. Computer and measure conductance and resistance of conductors and insulators
- 3 2 1 9 6. Construct and Verify Series Circuits
- 3 2 1 0 7. Construct and Verify Parallel Circuits
- 3 2 1 0 8. Construct and Verify Series Parallel Circuits
- 3 2 1 0 9. Construct and Verify Voltage Divider Circuits
- 3 2 1 0 10. Set up and Utilize power supplies, oscilloscopes, ammeter, ohmmeter, and voltmeter
- 3 2 1 0 11. Apply maximum power transfer theory
- 3 2 1 0 12. Troubleshoot various circuit failures
- **40470 Microcontrollers** (1 credit) Teach the fundamental concepts of Microprocessing and controllers.
- 3 2 1 0 1. List the components of an embedded microcontroller-bases system.
- 3 2 1 0 2. Explain the difference between a microcontroller, microprocessor, microcontroller unit and microprocessor unit.
- 3 2 1 0 3. Draw the block diagram of a microcontroller-based system showing the microprocessor, memory, I/Os and buses.
- 3 2 1 0 4. Describe the functions of the access bus, data bus, and control signals.
- 3 2 1 0 5. Explain the difference between machine language, assembly language and high-level computer languages.
- 3 2 1 0 6. Explain the purpose of registers and their function in the programming model for a microcontroller.
- 3 2 1 0 7. Explain the use of the data condition flags
- 3 2 1 0 8. Explain the functional categories of a microcontroller instruction set.

- 3 2 1 0 9. Explain how data memory (registers) are divided into banks and how registers are accessed.
- 3 2 1 0 10. Demonstrate ability to construct a flowchart to specify the tasks to be performed and their sequence
- 3 2 1 0 11. Describe the functions of various programs such as an editor, assembler, linker, and debugger used in developing assemble language software
- 3 2 1 0 12. Write and execute a simple assembly language program.
- 3 2 1 0 13. Demonstrate the debugging techniques in troubleshooting assembly language programs
- 3 2 1 0 14. Explain the concepts of memory pointers and indexing.
- 3 2 1 0 15. Explain how data is copied between the program memory and data registers
- 3 2 1 0 16. Explain the function of arithmetic instructions add, subtract, increments, decrement, 1's and 2's complement, and compare how flags are affected
- 3 2 1 0 17. Write a set of instruction to illustrate the use of data copy and arithmetic instructions.
- 3 2 1 0 18. Demonstrate the following debugging techniques in troubleshooting assembly language programs: single-step, breakpoint, and tracing code.
- 3 2 1 0 19. Explain how flags are used in making programming decisions and setting up loops
- 3 2 1 0 20. Calculate the time needed for a MPU to execute instructions in a loop and write instruction to generate time delays
- 3 2 1 0 21. Explain logic instructions and their operations
- 3 2 1 0 22. Illustrate the format of multiple instructions and explain their operations
- 3 2 1 0 23. Define the terms stack and stack pointer and explain how they are used.
- 3 2 1 0 24. Explain the functions of the instructions PUSH and POP.

- 3 2 1 0 25. Define the terms subroutine and macro, and list advantages and disadvantages of each.
- 3 2 1 0 26. Explain the basic concepts in I/O interfacing using a block diagram.
- 3 2 1 0 27. Explain how binary addresses are assigned to I/O ports, data bus, and control signals.
- 3 2 1 0 28. Explain the term "multiplexed I/O ports".
- 3 2 1 0 29. Interface switches, push button keys, and a matrix keyboard to a microcontroller and write instruction to read and process key inputs.

## 40480 - Integrated Circuits (1 credit)

Teach the fundamental concepts of Integrated Circuits and Circuit Design.

- 3 2 1 0 1. Describe what is meant by the term operational amplifier
- 3 2 1 0 2. Explain the finite limits of operational amplifiers
- 3 2 1 0 3. Describe what is meant by an internallycompensated operational amplifier
- 3 2 1 0 4. Describe in terms of 3-dB frequency, finite gain, slope, unity gain, and gain bandwidth product the open and closed loop frequency response of the compensated operational amplifier
- 3 2 1 0 5. Describe under what conditions positive feedback will cause instability in operational amplifier designs
- 3 2 1 0 6. Demonstrate the use of the operational amplifier as an analog comparator
- 3 2 1 0 7. Describe the use of comparators in flash analog-to-digital (ADC) converters
- 3 2 1 0 8. Demonstrate the use of the operational amplifier as a voltage buffer or unity gain amplifier
- 3 2 1 0 9. Calculate gain coefficients for input terms for the inverting and non-inverting summing

- amplifier
- 3 2 1 0 10. Calculate the trigger voltages for the noninverting comparator used as a Schmitt trigger
- 3 2 1 0 11. Describe what meant by a first-order, second order, and higher order filters
- 3 2 1 0 12. Calculate the gain and 3-dB frequency utilizing a variety of filters
- 3 2 1 0 13. Describe the theory of operation of the RC phase shift oscillator
- 3 2 1 0 14. Explain the conditions required for unstable oscillations in RC phase shift feedback oscillators in terms of phase shift and gain
- 3 2 1 0 15. Calculate the expected frequency of oscillation for different operations amplifier and/ or emitter oscillators
- 3 2 1 0 16. Describe the theory of operation of the LC tuned circuit oscillator
- 3 2 1 0 17. Explain the conditions required for unstable oscillations in tuned circuit oscillators in terms of Q, gain and phase
- 3 2 1 0 18. Describe the theory of operation of the relaxation oscillator
- 3 2 1 0 19. Explain the conditions required for unstable oscillations in relaxation oscillators in terms of rate of discharge, delay, and time constant
- 3 2 1 0 20. Describe the theory of operation of the 555 timer integrated circuit
- 3 2 1 0 21. Calculate the duty cycle and oscillation frequency of the 555 timer integrated circuit
- 3 2 1 0 22. Calculate the pulse width of the 555 timer integrated circuit in the one shot mode of operation
- 3 2 1 0 23. Explain what is meant by voltage regulation of a voltage regulator
- 3 2 1 0 24. Explain what is meant by line and load regulation of a voltage regulator
- 3 2 1 0 25. Explain what is meant by a shunt, series, and shunt-series voltage regulator

- **40490 Drones** (1 credit) Teach the principles, practices, and regulation of sUAS operations
- 3 2 1 0 1. Describe the applicability of 14 CFR part 107 to small unmanned aircraft operations.
- 3 2 1 0 2. Demonstrate Knowledge of UAS Regulations
- 3 2 1 0 3. Demonstrate Knowledge of Airspace
  Classification and Operating Requirements
- 3 2 1 0 4. Demonstrate Knowledge of Weather as it relates to sUAS
- 3 2 1 0 5. Demonstrate Knowledge of Loading and Performance as it relates to sUAS
- 3 2 1 0 6. Demonstrate Knowledge of Operations
- 3 2 1 0 7. Prepare for written sUAS exam
- 3 2 1 0 8. Operate sUAS in compliance will all safety concerns
- 3 2 1 0 9. Recognize the types of airports, such as towered, uncontrolled towered, heliport, and seaplane bases.
- 3 2 1 0 10. Ensuring the remote pilot can monitor and interpret ATC communications to improve situational awareness.
- 3 2 1 0 11. Interpret runway markings and signage
- 3 2 1 0 12. Distinguish traffic patterns used by manned aircraft pilots.
- 3 2 1 0 13. Identify security Identification Display Areas (SIDA).
- 3 2 1 0 14. Interpret Aeronautical charts
- 3 2 1 0 15. Interpret aeronautical chart supplements
- 3 2 1 0 16. Explain hazardous sUAS operation
- 3 2 1 0 17. Demonstrate Accident reporting procedures
- 3 2 1 0 18. Compare and contrast registration regulations for sUAS vs other aircraft
- 3 2 1 0 19. Describe regulatory deviation an reporting requirements for in flight emergencies
- 3 2 1 0 20. Explain Visual line of sight (VLOS) aircraft operations.
- 3 2 1 0 21. Relate aircraft right away guidelines
- 3 2 1 0 22. Determine if sUAS operation is allowed in a geographical location

- 3 2 1 0 23. Classify operating limitations of sUASs
- 3 2 1 0 24. Calculate loading requirements for different configurations
- 3 2 1 0 25. Predict the performance of sUAS utilizing
- 3 2 1 0 26. Write to the physiology consideration and their effects on safety
- 3 2 1 0 27. Develop a preflight checklist
- 3 2 1 0 28. Complete preflight inspection
- 3 2 1 0 29. Describe techniques to mitigate mechanical failures
- 3 2 1 0 30. Demonstrate appropriate record keeping.
- 3 2 1 0 31. Compare different types of avionics systems and components from a variety of manufacturers
- 3 2 1 0 32. Discuss the data/information systems such as ARINC and GOGO used in avionics
- 3 2 1 0 33. Examine the communications systems used in avionics

## 21008 Digital Electronics (1 credit)

Teach students the fundamental concepts and terminology used in Digital Electronics.

- 3210 1. Students will identify hazards in the lab and locations of the MSDS, safety equipment, and resources.
- 3210 2. Students will understand how to prevent dangers from electric shock, including environmental concerns and precautionary measures.
- 3210 3. Students will define and explain direct and alternating currents along with components and schematics used in electronics circuitry.
- 3210 4. Students will correctly calculate and set up lab equipment for safety, design, test, using Ohm's law and circuit measurements.
- 3210 5. Students will identify and differentiate digital and analog waveforms.
- 3210 6. Students will build and test a free running

- clock and calculate output frequencies from observations on an oscilloscope.
- 3210 7. Students will design and build logic circuits derived from Boolean expressions and truth tables.
- 3210 8. Students will use DE Morgan's Theorem, Karnaugh mapping, NOR, NAND, and combinational logic solutions to reduce and simplify circuits.
- 3210 9. Students will design, code, and build logic circuits to control different kinds of displays.
- 3210 10. Students will control the flow of data by utilizing multiplexers and demultiplexers.
- 3210 11. Students will design and implement logic circuits using programmable logic devices that define combinational circuit designs using logic compiler software.
- 3210 12. Students will compare and contrast operation of RS flip-flops, D flip-flops, and J-K flip-flops.
- 3210 13. Students will understand, design, and implement different circuits using synchronous, asynchronous, triggering, and timing using flip-flops.
- 3210 14. Students will design modification counters using timing from asynchronous flip-flops.
- 3210 15. Students will conduct experiments with shift registers for memory storage and arithmetic circuits.
- 3210 16. Students will design both half and full adders from logic circuits to do simple addition and subtraction using binary numbers.
- 3210 17. Students will appropriately select, size, and implement interface devices to control external devices.
- 3210 18. Students will design and create programming to control the position of stepper motors and control speed and torque of servo motors.
- 3210 19. Students will be able to formulate a flow chart to correctly apply basic programming concepts in the planning of a project.

## 41048 Workplace Experience in

**Engineering** (.5 credit) Application level workplace experience /internship completed by students at a business location or within the school that is an engineering occupational experience.

- 3 2 1 0 1. Employ effective listening skills when working with client.
- 3 2 1 0 2. Employ customer service principles when working with consumers.
- 3 2 1 0 3. Evaluate and follow-up on customer service provided.
- 3 2 1 0 4. Employ safety skills and equipment usage in appropriate ways.
- 3 2 1 0 5. Be aware of MSDS (Material Safety Data Sheets) and other safety resources and employ those resources as required for the workplace.

## 21048 Workplace Experience (1 credit)

Application level workplace experience /internship completed by students at a business location or within the school that is an engineering occupational experience.

- 3 2 1 0 1. Employ effective listening skills when working with client.
- 3 2 1 0 2. Employ customer service principles when working with consumers.
- 3 2 1 0 3. Evaluate and follow-up on customer service provided.
- 3 2 1 0 4. Employ safety skills and equipment usage in appropriate ways.
- 3 2 1 0 5. Be aware of MSDS (Material Safety Data Sheets) and other safety resources and employ those resources as required for the workplace.

#### **ENGINE MAINTENANCE STRAND**

## 40500-Aviation Engine Performance I

(1 credit) Application level course designed to teach fundamentals of reciprocal operation systems related to aviation engines.

- 3 2 1 0 1. Describe the basic operating principle of d.c. electrical instruments.
- 3 2 1 0 2. Demonstrate basic operating principles of a galvanometer.
- 3 2 1 0 3. Connect voltmeters and ammeters into an electrical circuit.
- 3 2 1 0 4. Describe purpose of a shunt resistor when used with an ammeter.
- 3 2 1 0 5. Explain the reasons for changing engine lubricating oil at specified intervals.
- 3 2 1 0 6. Discover purpose and operation of an oil/air separator.
- 3 2 1 0 7. Examine for excessive internal oil consumption in a reciprocating engine.
- 3 2 1 0 8. Determine the correct oil for specific engine types
- 3 2 1 0 9. Determine approved oils for different climatic temperatures.
- 3 2 1 0 10. Inspect oil cooler and/or oil lines for leaks
- 3 2 1 0 11. Inspect an oil filter or screen
- 3 2 1 0 12. Check engine oil pressure.
- 3 2 1 0 13. Perform oil pressure adjustment.
- 3 2 1 0 14. Identify oil system components.
- $3\ 2\ 1\ 0\ 15$ . Replace oil system components
- 3 2 1 0 16. Identify oil system flow.
- 3 2 1 0 17. Service an oil tank.
- 3 2 1 0 18. Perform an engine pre-oil operation.
- 3 2 1 0 19. Troubleshoot an engine oil pressure malfunction.
- 3 2 1 0 20. Troubleshoot an engine oil temperature system.
- 3 2 1 0 21. Troubleshoot a fuel flow and/or low fuel pressure indicating system.
- 3 2 1 0 22. Identify operation of a fuel flow indicating

system

- 3 2 1 0 23. Interpret operation of a temperature indicating system
- 3 2 1 0 24. Interpret operation of a pressure indicating system.
- 3 2 1 0 25. Explain operation of a revolutions per minute (RPM) indicating system.
- 3 2 1 0 26. Complete required checks to verify proper operation of a temperature indicating system.
- 3 2 1 0 27. Complete required checks to verify proper operation of a pressure indicating system
- 3 2 1 0 28. Complete required checks to verify proper operation of a RPM indicating system.
- 3 2 1 0 29. Verify operation of a manifold pressure gauge
- 3 2 1 0 30. Adjust fuel pump fuel pressure.
- 3 2 1 0 31. Troubleshoot abnormal fuel pressure.
- 3 2 1 0 32. Remove, inspect, and/or install a fuel-flow transmitter and/or flow gauge.
- 43 2 1 0 33. Inspect fuel flow transmitter power supply.
- 3 2 1 0 34. Troubleshoot a fuel-flow system
- 3 2 1 0 35. Inspect tachometer markings for accuracy.
- 3 2 1 0 36. Perform resistance measurements of thermocouple indication system.
- 3 2 1 0 37. Compare ignition systems and functions

## **40510 – Aviation Engine Performance**

**II** (1 credit) Application level course designed to teach fundamentals of diagnostic procedures and practices common to Aviation engine performance.

- 3 2 1 0 1. Disassemble a reciprocating engine
- 3 2 1 0 2. Inspect internal engine components
- 3 2 1 0 3. Reassemble reciprocating engine
- 3 2 1 0 4. Replace packing seals in a push rod housing.
- 3 2 1 0 5. Check and/or rig cable and push-pull

engine controls.

- 3 2 1 0 6. Adjust valve clearances.
- 3 2 1 0 7. Inspect engine mounts.
- 3 2 1 0 8. Demonstrate engine starting procedures.
- 3 2 1 0 9. Perform a cold cylinder check.
- 3 2 1 0 10. Locate top dead-center position of a piston.
- 3 2 1 0 11. Check cylinder compression with differential compression tester.
- 3 2 1 0 12. Analyze symptoms of improper fuel mixture
- 3 2 1 0 13. Identify procedures for checking idle mixture on a reciprocating engine.
- 3 2 1 0 14. Determine possible causes for poor engine acceleration, engine backfiring or missing when the throttle is advanced.
- 3 2 1 0 15. Define types and operation of various fuel metering systems.
- 3 2 1 0 16. Illustrate fuel metering system components.
- 3 2 1 0 17. Identify carburetor components.
- 3 2 1 0 18. Interpret diagram showing fuel and air flow through float-type and/or pressure type carburetor.
- 3 2 1 0 19. Remove and/or install a main metering jet in a carburetor.
- 3 2 1 0 20. Clean and service a carburetor fuel inlet screen.
- 3 2 1 0 21. Identify carburetor air-bleed system.
- 3 2 1 0 22. Remove and/or install the accelerating pump in a float-type carburetor.
- 3 2 1 0 23. Inspect the float level on a float-type carburetor.
- 3 2 1 0 24. Remove and/or install the mixture control system in a float-type carburetor.
- 3 2 1 0 25. Inspect float needle and/or seat in a floattype carburetor.
- 3 2 1 0 26. Identify, remove, and/or install a floattype carburetor.
- 3 2 1 0 27. Adjust idle speed and/or air fuel mixture.
- 3 2 1 0 28. Operate an aircraft engine or an analogues engine

### 40520 – Aviation Material Processes

(1 credit) An application level course designed to teach students skills and materials required for manufacturing, assembly, and repair of aircraft.

- 3 2 1 0 1. Identify types of materials used in aviation
- 3 2 1 0 2. Inspect, test, and repair fiberglass, plastics, honeycomb, composite, and laminated primary and secondary structures.
- 3 2 1 0 3. Select, install, and remove special fasteners for metallic, bonded, and composite structures.
- 3 2 1 0 4. Inspect sheet metal structures
- 3 2 1 0 5. Repair sheet metal structures
- 3 2 1 0 6. Install conventional rivets
- 3 2 1 0 7. Install blind fasteners
- 3 2 1 0 8. Perform Layout for Sheetmetal
- 3 2 1 0 9. Manipulate Sheetmetal for aviation structure
- 3 2 1 0 10. Create a project utilizing aviation sheetmetal techniques
- 3 2 1 0 11. Demonstrate the difference between power, work and force
- 3 2 1 0 12. Identify sealing materials as chemicals
- 3 2 1 0 13. Define a physical hazard in relation to work with chemicals
- 3 2 1 0 14. Identify safety data sheet (SDS)
- 3 2 1 0 15. Explain potential physical hazards associated with chemicals
- 3 2 1 0 16. Describe health hazards associated with chemicals
- 3 2 1 0 17. Identify the concept of chemical exposure
- 3 2 1 0 18. Identify PPE used to minimize exposure to chemicals
- 3 2 1 0 19. Describe the federal agency charged with regulating safety
- 3 2 1 0 20. Explain why proper fit of personal protective equipment is important
- 3 2 1 0 21. Demonstrate proper use of personal protective equipment

### 40530 – Aviation Pneumatics and

**Hydraulics** (1 credit) An application level course designed to teach students the basic theory and technical knowledge required to service pneumatic and hydraulic systems.

- 3210 1. Identify correct fittings for flexible hose assemblies.
- 3210 2. Identify correct fittings for rigid tubing installations.
- 3210 3. Compare and contrast flare angles for AN, AC, and automotive fittings.
- 3210 4. Demonstrate the process of making appropriate (single or double) flares in rigid tubing using appropriate technical data.
- 3210 5. Identify tubing for low pressure, medium pressure, and high pressure applications.
- 3210 6. Identify flexible hoses used in low pressure, medium pressure, high pressure, and extremely high pressure applications.
- 3210 7. Identify aircraft nuts, bolts, screws, and washers used in aviation
- 3210 8. Identify AN, NAS, and MS specifications
- 3210 9. Differentiate between the types of Hydraulic oils
- 3210 10. Compare and Contrast Hydraulic and Pneumatic systems
- 3210 11. Build, inspect, operate, and troubleshoot a pneumatic system
- 3210 12. Build, inspect, operate, and troubleshoot a hydraulic system
- 3210 13. Demonstrate Bernoulli's Principle
- 3210 14. Apply the principles of physics as they relate to Powerplant operation and components
- 3210 15. Apply the principles of physics as they relate to Airframe structures and components

## 41048 Workplace Experience in

**Engineering** (.5 credit) Application level workplace experience /internship completed by

students at a business location or within the school that is an engineering occupational experience.

- 3 2 1 0 1. Employ effective listening skills when working with client.
- 3 2 1 0 2. Employ customer service principles when working with consumers.
- 3 2 1 0 3. Evaluate and follow-up on customer service provided.
- 3 2 1 0 4. Employ safety skills and equipment usage in appropriate ways.
- 3 2 1 0 5. Be aware of MSDS (Material Safety Data Sheets) and other safety resources and employ those resources as required for the workplace.

## 21048 Workplace Experience (1 credit)

Application level workplace experience /internship completed by students at a business location or within the school that is an engineering occupational experience.

- 3 2 1 0 1. Employ effective listening skills when working with client.
- 3 2 1 0 2. Employ customer service principles when working with consumers.
- 3 2 1 0 3. Evaluate and follow-up on customer service provided.
- 3 2 1 0 4. Employ safety skills and equipment usage in appropriate ways.
- 3 2 1 0 5. Be aware of MSDS (Material Safety Data Sheets) and other safety resources and employ those resources as required for the workplace.