
Standards numbers: grade.concept.subconcept.#

Concept Subconcept

6th - 8th Grade 

Ages 11-14

By the end of grade 8, students will be 

able to...

Implementation Descriptions

Devices

8.CS.D.01 Develop and implement a process to 

evaluate existing computing devices and 

recommend improvements to design based on 

analysis of how other users interact with the 

device. (P3)

The study of human–computer interaction (HCI) can improve the design of devices, including both hardware and 

software. Students should make recommendations for existing devices (e.g., a laptop, phone, or tablet) or design 

their own components or interface (e.g., create their own controllers). Teachers can guide students to consider 

usability through several lenses, including accessibility, ergonomics, and learnability. For example, assistive 

devices provide capabilities such as scanning written information and converting it to speech.

Hardware & 

Software

8.CS.HS.01 Model a computing system involving 

multiple considerations and potential tradeoffs of 

software and hardware, such as functionality, cost, 

size, speed, accessibility, and aesthetics (P5)

Collecting and exchanging data involves input, output, storage, and processing. When possible, students should 

select the hardware and software components for their project designs by considering factors such as functionality, 

cost, size, speed, accessibility, and aesthetics. For example, components for a mobile app could include 

accelerometer, GPS, and speech recognition. The choice of a device that connects wirelessly through a Bluetooth 

connection versus a physical USB connection involves a tradeoff between mobility and the need for an additional 

power source for the wireless device.

Troubleshooting

8.CS.T.01 Systematically identify, fix, and 

document increasingly complex software and 

hardware problems with computing devices and 

their components.(P6)

Since a computing device may interact with interconnected devices within a system, problems may not be due to 

the specific computing device itself but to devices connected to it. Just as pilots use checklists to troubleshoot 

problems with aircraft systems, students should use a similar, structured process to troubleshoot problems with 

computing systems and ensure that potential solutions are not overlooked. Examples of troubleshooting strategies 

include following a troubleshooting flow diagram, making changes to software to see if hardware will work, checking 

connections and settings, and swapping in working components.

Network 

Communication 

& Organization

8.NI.NCO.01 Explain protocols and their 

importance to data transmission; model how 

packets are broken down into smaller pieces and 

how they are delivered.(P4)

Protocols are rules that define how messages between computers are sent. They determine how quickly and 

securely information is transmitted across networks and the Internet, as well as how to handle errors in 

transmission. Students should model how data is sent using protocols to choose the fastest path, to deal with 

missing information, and to deliver sensitive data securely. For example, students could devise a plan for resending 

lost information or for interpreting a picture that has missing pieces. The priority at this grade level is understanding 

the purpose of protocols and how they enable secure and errorless communication. Knowledge of the details of 

how specific protocols work is not expected.

8.NI.C.01 Evaluate physical and digital procedures 

that could be implemented to protect electronic 

data/information; explain the impacts of hacking, 

ransomware, scams, fake scans, and ethical/legal 

concerns.(P7)

Information that is stored online is vulnerable to unwanted access. Examples of physical security measures to 

protect data include keeping passwords hidden, locking doors, making backup copies on external storage devices, 

and erasing a storage device before it is reused. Examples of digital security measures include secure router 

admin passwords, firewalls that limit access to private networks, and the use of a protocol such as HTTPS to 

ensure secure data transmission.

8.NI.C.02 Compare the advantages and 

disadvantages of multiple methods of encryption to 

model the secure transmission of information.(P4)

Encryption can be as simple as letter substitution or as complicated as modern methods used to secure networks 

and the Internet. Students should encode and decode messages using a variety of encryption methods, and they 

should understand the different levels of complexity used to hide or secure information. For example, students 

could secure messages using methods such as Caesar cyphers or steganography (i.e., hiding messages inside a 

picture or other data). They can also model more complicated methods, such as public key encryption, through 

unplugged activities.

Storage

8.DA.S.01 Analyze multiple methods of 

representing data and choose the most 

appropriate method for representing data.(P4)

Data representations occur at multiple levels of abstraction, from the physical storage of bits to the arrangement of 

information into organized formats (e.g., tables). Students should represent the same data in multiple ways. For 

example, students could represent the same color using binary, RGB values, hex codes (low-level 

representations), as well as forms understandable by people, including words, symbols, and digital displays of the 

color (high-level representations).

Collection

8.DA.C.01 Develop, implement, and refine a 

process that utilizes computational tools to collect 

meaningful data. (P6)

Students need to be able to distinguish between different types of data and computational tools and how this 

effects the accuracy and percision of the data. (for example, surveys versus sensor data)

C
o
m

p
u
ti
n
g
 S

y
s
te

m
s

N
e
tw

o
rk

s
 &

 t
h
e
 I
n
te

rn
e
t

Cybersecurity

D
a
ta

 A
n
a
ly

s
is



Visualization & 

Transformation

8.DA.VT.01 Develop, implement, and refine a 

process to make data more useful and 

reliable.(P6)

As students continue to build on their ability to organize and present data visually to support a claim, they will need 

to understand when and how to transform data for this purpose. Students should transform data to remove errors, 

highlight or expose relationships, and/or make it easier for computers to process. The cleaning of data is an 

important transformation for ensuring consistent format and reducing noise and errors (e.g., removing irrelevant 

responses in a survey). An example of a transformation that highlights a relationship is representing males and 

females as percentages of a whole instead of as individual counts.

Inference & 

Models

8.DA.IM.01 Refine computational models based on 

the data generated by the models.(P5, P4)

A model may be a programmed simulation of events or a representation of how various data is related. In order to 

refine a model, students need to consider which data points are relevant, how data points relate to each other, and 

if the data is accurate. For example, students may make a prediction about how far a ball will travel based on a 

table of data related to the height and angle of a track. The students could then test and refine their model by 

comparing predicted versus actual results and considering whether other factors are relevant (e.g., size and mass 

of the ball). Additionally, students could refine game mechanics based on test outcomes in order to make the game 

more balanced or fair.

Algorithms

8.AP.A.01 Design algorithms in natural language, 

flow and control diagrams, comments within code, 

and/or pseudocode to solve complex 

problems.(P4)

Complex problems are problems that would be difficult for students to solve computationally. Students should use 

pseudocode and/or flowcharts to organize and sequence an algorithm that addresses a complex problem, even 

though they may not actually program the solutions. For example, students might express an algorithm that 

produces a recommendation for purchasing sneakers based on inputs such as size, colors, brand, comfort, and 

cost. Testing the algorithm with a wide range of inputs and users allows students to refine their recommendation 

algorithm and to identify other inputs they may have initially excluded.

Variables

8.AP.V.01 Create programs using variables with 

purposeful and thoughtful naming conventions for 

identifiers to improve program readability(P5)

A variable is like a container with a name, in which the contents may change, but the name (identifier) does not. 

When planning and developing programs, students should decide when and how to declare and name new 

variables. Students should use naming conventions to improve program readability. Examples of operations 

include adding points to the score, combining user input with words to make a sentence, changing the size of a 

picture, or adding a name to a list of people.

Control

8.AP.C.01 Develop programs that utilize 

combinations of nested repetition, compound 

conditionals, procedures without parameters, and 

the manipulation of variables representing different 

data types.(P5)

Control structures can be combined in many ways. Nested loops are loops placed within loops. Compound 

conditionals combine two or more conditions in a logical relationship (e.g., using AND, OR, and NOT), and nesting 

conditionals within one another allows the result of one conditional to lead to another. For example, when 

programming an interactive story, students could use a compound conditional within a loop to unlock a door only if 

a character has a key AND is touching the door.

Modularity

8.AP.M.01 Decompose problems and 

subproblems into parts to facilitate the design, 

implementation, and review of complex 

programs.(P3)

Students should break down problems into sub problems, which can be further broken down to smaller parts. 

Decomposition facilitates aspects of program development by allowing students to focus on one piece at a time 

(e.g., getting input from the user, processing the data, and displaying the result to the user). Decomposition also 

enables different students to work on different parts at the same time. For example, animations can be 

decomposed into multiple scenes, which can be developed independently.

8.AP.PD.01 Seek and incorporate feedback from 

team members and users to refine a solution to a 

problem that meets the needs of diverse 

users.(P2, P1)

Development teams that employ user-centered design create solutions (e.g., programs and devices) that can have 

a large societal impact, such as an app that allows people with speech difficulties to translate hard-to-understand 

pronunciation into understandable language. Students should begin to seek diverse perspectives throughout the 

design process to improve their computational artifacts. Considerations of the end-user may include usability, 

accessibility, age-appropriate content, respectful language, user perspective, pronoun use, color contrast, and 

ease of use.

8.AP.PD.02 Incorporate existing code, media, and 

libraries into original programs of increasing 

complexity and give attribution.(P4, P5, P7)

Building on the work of others enables students to produce more interesting and powerful creations. Students 

should use portions of code, algorithms, and/or digital media in their own programs and websites. At this level, they 

may also import libraries and connect to web application program interfaces (APIs). For example, when creating a 

side-scrolling game, students may incorporate portions of code that create a realistic jump movement from another 

person's game, and they may also import Creative Commons-licensed images to use in the background. Students 

should give attribution to the original creators to acknowledge their contributions.

8.AP.PD.03 Systematically test and refine 

programs using a range of student created 

inputs.(P6)

Use cases and test cases are created and analyzed to better meet the needs of users and to evaluate whether 

programs function as intended. At this level, testing should become a deliberate process that is more iterative, 

systematic, and proactive than at lower levels. Students should begin to test programs by considering potential 

errors, such as what will happen if a user enters invalid input (e.g., negative numbers and 0 instead of positive 

numbers).

D
a
ta

 A
n
a
ly

s
is

A
lg

o
ri
th

m
s
 a

n
d
 P

ro
g
ra

m
in

g

Program 

Development



8.AP.PD.04 Explain how effective communication 

between participants is required for successful 

collaboration when developing computational 

artifacts.(P2)

Collaboration is a common and crucial practice in programming development. Often, many individuals and groups 

work on the interdependent parts of a project together. Students should assume pre-defined roles within their 

teams and manage the project workflow using structured timelines. With teacher guidance, they will begin to create 

collective goals, expectations, and equitable workloads. For example, students may divide the design stage of a 

game into planning the storyboard, flowchart, and different parts of the game mechanics. They can then distribute 

tasks and roles among members of the team and assign deadlines.

8.AP.PD.05 Document text-based programs of 

increasing complexity in order to make them easier 

to follow, test, and debug.(P7)

Documentation allows creators and others to more easily use and understand a program. Students should provide 

documentation for end users that explains their artifacts and how they function. For example, students could 

provide a project overview and clear user instructions. They should also incorporate comments in their product and 

communicate their process using design documents, flowcharts, and presentations.

8.IC.C.01 Describe the trade-offs associated with 

computing technologies (e.g. automation), 

explaining their effects on economies and global 

societies, and explore careers related to the field 

of computer science.(P7)

Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use 

computing technologies have tradeoffs. Students should consider current events related to broad ideas, including 

privacy, communication, and automation. For example, driverless cars can increase convenience and reduce 

accidents, but they are also susceptible to hacking. The emerging industry will reduce the number of taxi and 

shared-ride drivers, but will create more software engineering and cybersecurity jobs.

8.IC.C.02 Evaluate and improve the design of 

existing technologies to meet the needs of diverse 

users and increase accessibility and usability.

(P1)

Students should test and discuss the usability of various technology tools (e.g., apps, games, and devices) with the 

teacher's guidance. For example, facial recognition software that works better for lighter skin tones was likely 

developed with a homogeneous testing group and could be improved by sampling a more diverse population. 

When discussing accessibility, students may notice that allowing a user to change font sizes and colors will not only 

make an interface usable for people with low vision but also benefits users in various situations, such as in bright 

daylight or a dark room.

Social 

Interactions

8.IC.SI.01 Communicate and publish key ideas 

and details individually or collaboratively in a way 

that informs, persuades, and/or entertains using a 

variety of digital tools and media-rich resources. 

Describe and use safe, appropriate, and 

responsible practices (netiquette) when 

participating in online communities (e.g., 

discussion groups, blogs, social networking 

sites).(P2, P5)

Crowdsourcing is gathering services, ideas, or content from a large group of people, especially from the online 

community. It can be done at the local level (e.g., classroom or school) or global level (e.g., age appropriate online 

communities, like Scratch and Minecraft). For example, a group of students could combine animations to create a 

digital community mosaic. They could also solicit feedback from many people though use of online communities 

and electronic surveys.

History

8.IC.H.01 Identify and describe how the promonint 

figures in computer science have impacted and/or 

progressed the field

Input here would be appreciated

Safety, Law, & 

Ethics

8.IC.SLE.01 Discuss the social impacts and ethical 

considerations associated with cybersecurity, 

including the positive and malicious purposes of 

hacking.(P7)

Sharing information online can help establish, maintain, and strengthen connections between people. For example, 

it allows artists and designers to display their talents and reach a broad audience. However, security attacks often 

start with personal information that is publicly available online. Social engineering is based on tricking people into 

revealing sensitive information and can be thwarted by being wary of attacks, such as phishing and spoofing.

Community 

Partnerships

8.IC.CP.01 Formulate a computer-science based 

solution for a problem or issue by gathering input 

from local / regional industry members

Input here would be appreciated

Culture 

Impacts of Computing

A
lg

o
ri
th

m
s
 a

n
d
 P

ro
g
ra

m
in

g

Program 

Development


